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� A large quantity of pollutants was
released into Galveston Bay during
Harvey.

� LET is introduced to quantify spatially
varying susceptibility to released
pollutant.

� Huge differences in pollutant
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� Pollutant discharge after the storm
discharge can be more damaging than
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both estuarine and shelf circulations.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 1 October 2019
Received in revised form 1 November 2019
Accepted 1 November 2019
Available online 21 November 2019

Editor: Dr. Damia Barcelo

Keywords:
Storm discharge
Retention
Local exposure time
Particle tracking
SCHISM
a b s t r a c t

Increasing frequency of extreme precipitation events under the future warming climate makes the storm-
related pollutant release more and more threatening to coastal ecosystems. Hurricane Harvey, a 1000-
year extreme precipitation event, caused massive pollutant release from the Houston metropolitan area
to the adjacent Galveston Bay. 0.57 � 106 tons of raw sewage and 22,000 barrels of oil, refined fuels and
chemicals were reportly released during Harvey, which would likely deteriorate the water quality and
damage the coastal ecosystem. Using a Lagrangian particle-tracking method coupled with a validated
3D hydrodynamic model, we examined the retention, pathway, and fate of the released pollutants. A
new timescale, local exposure time (LET), is introduced to quantitatively evaluate the spatially varying
susceptibility inside the bay and over the shelf, with a larger LET indicating the region is more susceptible
to the released pollutants. We found LET inside the bay is at least one order of magnitude larger for post-
storm release than storm release due to a quick recovery in the system’s flushing. More than 90% of pol-
lutants released during the storm exited the bay within two days, while those released after the storm
could stay inside the bay for up to three months. This implies that post-storm release is potentially more
damaging to water quality and ecosystem health. Our results suggest that not only the amount of total
pollutant load but also the release timing should be considered when assessing a storm’s environmental
and ecological influence, because there could be large amounts of pollutants steadily and slowly dis-
charged after storm through groundwater, sewage systems, and reservoirs.

� 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Pollutant release frequently happens during storm events, espe-
cially those accompanied by strong precipitation. The increasing
frequency of extreme precipitation events under a warming cli-
mate and a more humid atmosphere (Knight and Davis, 2009;
Donat et al., 2016; Pfahl et al., 2017) makes the storm-related pol-
lutant release even more threatening to coastal ecosystems in the
future. Massive wastewater, nutrient, bacteria, heavy metal, or
petrochemical products can be washed away by surface runoff or
spilled due to flooding and discharged into receiving waters. Their
influence on coastal environments can be catastrophic, particularly
for coastal embayment where water exchange with the coastal
ocean is slow and pollutants can stay for a long time. Damages
to the water quality, marine environment, marine mammals, and
fishery due to released pollutants have been extensively observed
(Weyhenmeyer et al., 2004; Cardoso et al., 2008; Wetz and
Yoskowitz, 2013). Recovery time from such extreme events for
the receiving waters in terms of hydrodynamics or ecosystem
health can take months or even years, depending on the amount
of freshwater load, pollutant concentration, flushing capacity, and
resiliency of the ecosystem (Paerl et al., 2001).

Environmental assessment for pollutant release usually focuses
more on the total pollutant load while rarely taking into account
the timing of release. Often, more pollutants are released during
storm discharge, but the flushing is also stronger during the storm.
Their influence on the coastal water quality is therefore not neces-
sarily linearly proportional to the total loading (Taylor et al., 2011).
As suggested by Dettmann (2001), more fraction of pollutants will
be exported out of coastal systems when the flushing capacity is
higher. Taking the massive pollutants released from the Houston
metropolitan area in Texas to the adjacent Galveston Bay during
Hurricane Harvey as an example, we show here that the release
timing is critically important and the susceptibility of coastal
waters to pollutant can be more serious than expected when pol-
lutants are released after the storm discharge.

Hurricane Harvey, the wettest tropical cyclone on record in the
U.S., made landfall on August 26, 2017 along the mid-Texas coast
as a Category 4 hurricane and brought unprecedented rainfall to
the Texas-Louisiana coast, with a return period of the peak 3-day
precipitation exceeding 1000 years (van Oldenborgh et al., 2018).
Intense rain with the daily precipitation averaged over the bay area
larger than 50 mm lasted for 5 days (i.e., August 26–30). Maximum
accumulative precipitation reached 1539 mm (60.58 in.)
(Mathews, 2019), causing more than 80 deaths and over 150 bil-
lion dollars of economic loss. It was estimated that Harvey deliv-
ered 14 � 109 m3 of freshwater (~3.7 times of the bay’s volume)
and deposited 9.9 � 107 metric tons of sediment (equivalent to
18 years of average annual sediment load) to Galveston Bay (Du
et al., 2019a,b). The bay became virtually fresh for a few days,
and salinity recovery inside the bay took about 2 months on aver-
age (Du and Park, 2019).

To make things worse, many petrochemical facilities were
flooded, resulting in chemical pollutant leak or release (Fig. 1a).
The flooding and the subsequent pollutant release are of great
concern, since Houston is known as the second-largest petro-
chemical industry hubs in the world (Santschi et al., 2001) and
the fourth largest city in the U.S. in terms of population size. Har-
vey was estimated to cause release of 0.57 � 106 tons of raw sew-
age (Phillips, 2018) and more than 22,000 barrels of oil, refined
fuels and chemicals (Flitter and Valdmanis, 2017) to Galveston
Bay. Harvey’s aftermath lasted for a long time, e.g., drastic mortal-
ity and slow recovery of oysters (Christine Jensen, personal com-
munication) and excessive skin problems for dolphins (Stuckey,
2017).
To date, some questions regarding the impacts of released pol-
lutants during Harvey are still not answered. For example, how
were the released pollutants dispersed inside and outside the
bay? How long did they stay inside the bay and where did the pol-
lutants aggregate? What are their pathway differences between
the normal condition and during storm discharge? Understanding
these questions is essential for environmental assessment, water
quality management, and ecosystem restoration.

In this study, we used a Lagrangian particle-tracking method
coupled with a validated 3D hydrodynamic model to examine
the retention and pathway of pollutants released during Hurricane
Harvey. Due to the random nature of particle movement and the
large number of released particles, it is unpractical to analyze the
pathway for each particle. To this end, we introduce a new trans-
port timescale, called local exposure time, to describe the spatially
varying susceptibility and to synthesize the mean characteristics of
particle dispersion. Considering the increasing intensity and fre-
quency of precipitation events, this study for Hurricane Harvey will
be instructive for future research.

The paper is structured as follows: Section 2 briefly introduces
the 3D numerical model, the coupled Lagrangian particle-tracking
method, and two transport timescales used to quantify the particle
retention and describe their pathway. Section 3 presents the
results of Lagrangian simulations, with special focus on the differ-
ence between post-storm release and storm release. Section 4 dis-
cusses the importance of timing on the particles’ retention and
pathway, as well as the role of shelf and ocean circulations for
the dispersion of particles after they exited the coastal system.

2. Methods

2.1. Hydrodynamic model

We employed the Semi-implicit Cross-scale Hydroscience Inte-
grated System Model (SCHISM: Zhang et al., 2015, 2016), an open-
source community-supported modeling system based on unstruc-
tured grids, derived from the early SELFE model (Zhang and
Baptista, 2008). SCHISM uses a highly efficient semi-implicit
finite-element/finite-volume method with a Eulerian-Lagrangian
algorithm to solve the turbulence-averaged Navier-Stokes equa-
tions, under the hydrostatic approximation. It uses the generic
length-scale model of Umlauf and Burchard (2003) with the stabil-
ity function of Kantha and Clayson (1994) for turbulence closure.
One of the major advantages of the model is that it has the capabil-
ity of employing a very flexible vertical grid system, robustly and
faithfully resolving the complex topography in estuarine and ocea-
nic systems without any smoothing (Zhang et al., 2016; Stanev
et al., 2017; Du et al., 2018a; Ye et al., 2018).

The model domain (Fig. 1c) covers the entire Texas, Louisiana,
Mississippi, and Alabama coasts, including the shelf aswell asmajor
estuaries (e.g., Galveston Bay). Themodel grid has a resolution rang-
ing from40m in the narrow ship channel of Galveston Bay to 2.5 km
on average over the shelf and 10 km in the open ocean. Vertically, a
hybrid s-z grid is used,with10 sigma layers for depths less than20m
and another 30 z-layers for depths from 20 to 4000 m with shaved
cells near the bottom. The bathymetry used in the model is based
on the coastal relief model (3 arc-second resolution: https://www.
ngdc.noaa.gov/mgg/coastal/crm.html, last access: September 25,
2019). The local bathymetry in Galveston Bay is augmented with
10-m resolution DEM (digital elevation model) bathymetric data
(https://catalog.data.gov/dataset/galveston-texas-coastal-digital-
elevation-model, last access: September25,2019) to resolve thenar-
row ship channel (150mwide, 10–15mdeep) that extends from the
bay entrance all theway to Port of Houston.When forced by realistic
boundary conditions, including the open boundary conditions from

https://www.ngdc.noaa.gov/mgg/coastal/crm.html
https://www.ngdc.noaa.gov/mgg/coastal/crm.html
https://catalog.data.gov/dataset/galveston-texas-coastal-digital-elevation-model
https://catalog.data.gov/dataset/galveston-texas-coastal-digital-elevation-model


Fig. 1. (a) A map showing the energy and industrial facilities exposed to the flooding induced by Hurricane Harvey’s heavy rainfall (modified from the figure in https://ucsusa.
maps.arcgis.com/apps/MapJournal/index.html?appid=1e958eff5c3e45a983e52ad523c2ffdd, last access: September 25, 2019). (b) Track of Hurricane Harvey, with colored
circles denoting the center pressure and blue background colors for the bathymetry in the Gulf of Mexico. Track of the hurricane is based on the data from the National
Hurricane Center (https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2017-050118.txt, last access: September 25, 2019). (c) Horizontal grid of the numerical model. (d)
Bathymetry of Galveston Bay, with the black arrow indicating the location where particles are released in numerical simulations. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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FES2014 global tide (Carrere et al., 2015) and global HYCOMmodel
output (https://www.hycom.org/data/glbu0pt08, last access:
September25, 2019), atmospheric forcing from theEuropeanCentre
for Medium-Range Weather Forecasts (ECMWF: https://www.
ecmwf.int, last access: September 25, 2019), and freshwater dis-
charges for 15 rivers, the model gives a good reproduction of the
observed hydrodynamic conditions in 2007–2008 inside the Galve-
ston Bay and over the Texas-Louisiana shelf in terms of water level,
salinity, temperature, stratification, and shelf currents (Du et al.,
2019c).

The model has been applied to simulate the hydrodynamic con-
ditions during Hurricane Harvey, and it reproduced well the dra-
matic estuarine responses, including the long-lasting elevated
water level, extraordinarily strong along-channel velocity, sharp
decreases and long recovery of salinity, and huge river plumes on
the shelf (Du and Park, 2019). The validated hydrodynamic model
provides reliable hydrodynamic fields, with which the following
Lagrangian simulations are coupled.

2.2. Lagrangian particle tracking

A Lagrangian particle tracking method coupled with the 3D
hydrodynamic model outputs was used to simulate the dispersion
of pollutants. At the junction between San Jacinto River and Buffalo
Bayou (Fig. 1d), 1378 particles (neutrally buoyant) were released
every day at 00:00 from August 1st to October 1st, 2017. The
release location was selected because the most serious pollutant
release was from the petrochemical facilities along the Buffalo
Bayou and San Jacinto River (Fig. 1a). A random walk was imple-
mented in the particle tracking module to include the influence
of the diffusion processes. The movements of particles are gov-
erned by advective and diffusive transport processes.

Xnþ1 ¼ Xn þ U þ @Kx
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where (X, Y, Z) is the location of the particle; U, V, and W are the
water velocity components in the Cartesian coordinates of x, y,
and z, respectively; n and n+1 indicate the current and next time
steps, respectively; Dt is the time interval; R is a uniform random
number between � 1 and 1; and Kx, Ky, and Kz are turbulent diffu-
sion coefficients in the x, y, and z directions, respectively.
2.3. Transport timescales

Two transport timescales were calculated to quantify the reten-
tion of the particles. One is the transit time, which measures the
duration of a particle staying inside a defined domain and is calcu-
lated as the time difference between entering and exiting the

https://www.hycom.org/data/glbu0pt08
https://www.ecmwf.int
https://www.ecmwf.int
https://ucsusa.maps.arcgis.com/apps/MapJournal/index.html%3fappid%3d1e958eff5c3e45a983e52ad523c2ffdd
https://ucsusa.maps.arcgis.com/apps/MapJournal/index.html%3fappid%3d1e958eff5c3e45a983e52ad523c2ffdd
https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2017-050118.txt
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domain (Shen and Haas, 2004). The mean transit time (/Þ averaged
over the N particles is calculated as

/ ¼ 1
N

XN
i¼1

ðt2i � t1iÞ ð4Þ

where t2 is the time when the particle exits the domain (i.e., Galve-
ston Bay in this study) for the first time, and t1 is the time when the
particle enters the domain. The transit time here does not consider
the returning of particles.

The local exposure time (LET) is the other timescale used. It is a
new concept derived from the traditional exposure time that mea-
sures the overall lifetime a particle spends inside a given domain.
The exposure time includes the duration after the particle returns
into the domain (Delhez, 2006). LET is the mean exposure time of a
set of particles within a defined region. Different from traditional
exposure time that gives one scalar value, LET allows us to examine
the spatial variability as we can separate the domain into many
small regions. LET can be calculated as,

LET ¼ 1
N

XN
i¼1

Z
ridt ð5Þ

where ri = 1 when the particle i is inside the defined region and
ri = 0 when the particle i is outside the defined region. The integra-
tion window with respect to t is from the particle release time to
the end of model run. For this study, the hydrodynamic output from
the numerical model covers the period of July 1 to December 31,
2017 (Du and Park, 2019). Another practical way to calculate the
LET from numerical results is to register the time when a particle
exits or enters the defined region, integrate the duration of all the
visits, and average for all particles (Fig. 2). In this study, we divided
the entire domain (including the bay and adjacent shelf) into
1 km � 1 km square regions and calculated the LET for each region.

Both particle’s pathway and retention affect the degree to
which released pollutants would influence local water quality
and ecosystem health. Since it is impractical to examine the path-
way of all released particles, LET provides a succinct and quantita-
tive description of all particles. LET is the combined result of the
flushing/exchange efficiency and the possibility of particles reach-
ing the given region. It is, therefore, suitable to use LET as a mea-
sure of the susceptibleness of any given region to the released
pollutant. A longer LET indicates the region is more susceptible
to the pollutant. For a given region, a longer LET can be caused
by several reasons including: (a) more particles passing through;
(b) more visits by each particle (e.g., back-forth moving due to
Fig. 2. Sketch diagram showing how
tide); (c) longer retention time for each visit (e.g., due to slow
current).
3. Results

3.1. Particles released during storm

Particles released at the beginning of Harvey discharge (i.e.,
August 27, 2017) were quickly flushed out of the bay, with a med-
ian transit time of 1.5 days and 90% of the particles exiting the bay
within 2 days (Fig. 3a-h). Particles moved seaward along the longi-
tudinal axis of the bay without tidal (back-and-forth) movement
(Fig. 4c). After exiting the bay, due to strong seaward momentum,
particles moved offshore, reaching as far as 50 km off the bay
entrance, consistent with remotely sensed sediment plume (Du
and Park, 2019). The fast seaward movement was primarily caused
by the strong ebbing along-channel current during Harvey. The
velocity measured at the bay entrance and the upper bay showed
the current (tidal + subtidal) was in seaward direction during the
entire storm discharge period, with the maximum ebbing velocity
exceeding 3 m s�1 in the upper bay (Du et al., 2019a).

As a result, the transit time was rather small during the storm
discharge period, with a minimum value of 1 day. The transit time
shows a linearly decreasing trend from August 1 to August 30
(Fig. 4a), because particles released before Harvey were subject
to quick flushing during the storm discharge. Therefore, the transit
time for particles released before Harvey is merely the time differ-
ence between the particle release time and the beginning of storm
discharge. It suggests that an episodic flooding event can efficiently
refresh the entire bay, thus playing an important role in the overall
water renewal.
3.2. Particles released after storm

The movement, pathway, and transit time of particles released
after the storm discharge were distinctly different from those
released at the beginning of Harvey. Particles moved seaward
slowly, with a median transit time of 60–90 days (Fig. 3i-p). Parti-
cles moved back and forth under the influence of tidal currents and
were dispersed over the entire bay (Fig. 4e). It took a long time for
particles to exit low-flushing regions such as Trinity Bay and East
Bay. After exiting the bay, particles tended to move downcoast
andmostly concentrated on the inner shelf (Figs. 2k-o and 3d). Sur-
prisingly, the transit time quickly reverted to that under normal
condition (~80 days) right after the storm discharge was termi-
to calculate LET in an estuary.



Fig. 3. For particles released on August 27, 2017 at the beginning of storm discharge: (a-g) particle distributions and (h) time series of remaining fraction inside the bay. (i-p)
For particles released on September 3, 2017 (at the end of the storm discharge). Note the differences in the time frame between (a-g) for 1–20 days and (i-o) for 10–100 days.
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nated. It suggests a quick recovery in flushing or water exchange
after the storm, despite the fact that it took about two months
for the salinity inside the bay to recover to the pre-storm condition
(Du and Park, 2019).

3.3. LET to quantify the susceptibleness

For the particles released during storm (i.e., August 26–30),
LET was small (Fig. 5a). With a maximum value of about 0.3 h,
LET was less than 0.1 h for most regions, suggesting a fast move-
ment and short retention of particles. LET was larger along the
ship channel and decreased as moving away from the channel,
indicating that most particles moved seaward along the ship
channel. It is necessary to point out that stronger along-channel
velocity made more particles move along the ship channel, result-
ing in more exposure time of particles and thus larger LETs near
the ship channel.

For the particles released during September 3–7 (i.e., after the
storm), LETs were at least one-order larger than those of storm
release (Fig. 5b). LET reached a maximum value of about 6 h in
the upper bay and had large values in Trinity Bay. It suggests that
particles tended to move into Trinity Bay and stayed there for a
long time, which was related to the small tidal range and slow
water renewal in Trinity Bay. Salinity measurement and numerical
modeling have confirmed the negligible tidal signal and slow
recovery in salinity inside the Trinity Bay (Du et al., 2019a; Du
and Park, 2019). LET became smaller toward downstream, primar-
ily due to a strong tidal exchange between the lower bay and the
shelf. Particles exiting the bay would have less chance to return
due to shelf transport, very different from that in the middle-
upper bay, where particles moved back and forth with tidal cycles.
4. Discussion

4.1. Importance of pollutant release timing

The model results draw our attention to an important but pre-
viously not well-recognized aspect concerning the pollutant sus-
ceptibility, that is, the release timing matters. Environmental
assessments typically focused on the total pollutant loading
(Brezonik and Stadelmann, 2002; Nazahiyah et al., 2007;
Tiefenthaler et al., 2008) and paid little attention to the release
timing. We demonstrate here that pollutants released after the
storm will be more influential on the water quality and ecosystem
health, as they will stay much longer inside the bay, than those
released during storm (Fig. 5) although the amount of pollutants
released after the storm is usually much smaller than that during
storm. It should be noted that the loading after Harvey was still
significant due to a large population and dense petrochemical
industries around Galveston Bay. Furthermore, several reservoirs
were controlled to release polluted water slowly. For example, Bar-
ker Reservoir, located west of Houston, released freshwater for
over 40 days after the storm (Du et al., 2019a). We can imagine that
pollutants in the reservoir waters were also released slowly and
steadily, which, combined with those from the city and groundwa-
ter along the coastline, might deteriorate the bay’s water quality
well after the storm discharge.

The underlying mechanism responsible for the timing sensitiv-
ity lies in the overall ocean-estuary exchange or the flushing capac-
ity. Slow flushing of the bay is the primary factor amplifying the
timing issue. The storm discharge and the resulting seaward out-
flow continued for only 5–7 days and then the back-and-forth tidal
current resumed. Pollutants released after the storm discharge is



Fig. 4. (a) Time series of the median transit time and daily streamflow from San Jacinto River, with green shade highlighting the storm discharge period. (b) Tracks of 20
particles released at the beginning of storm discharge (August 27, 2017), with zoom-in shown in (c). The 20 particles are randomly selected as it is not feasible to show the
pathways of all particles. (d-e) The same as (b-c) but for particles released at the end of storm discharge (September 3, 2017). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Local exposure time (LET) for particles released during (a) August 26–30, 2017 and (b) September 3–7, 2017. For each square region (1 km � 1 km), the LET value is an
average over all particles released during the respective 5-day period (6890 particles in total). Note the different color scales between (a) and (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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subject to long retention inside the bay. If the flushing time of a
system under normal condition is small, the timing sensitivity
can be of less importance. For many estuarine systems in the Gulf
of Mexico, however, flushing times are relatively long due to small
tidal range and narrow outlets (Rayson et al., 2016; Du et al.,
2018b). Relatively long flushing times are also expected for small
coastal embayments with small tidal range and little freshwater
discharge.

It is worthy to note estuarine systems with relatively wide
mouth(s), strong tide, and large volume are unlikely to have such
dramatic influence. For example, in Chesapeake Bay or San Fran-
cisco Bay, two of the largest estuaries in the U.S., the flushing time
varies in a less dramatic manner, primarily due to the large vol-
umes, and it is unlikely that the entire bay will be flushed out dur-
ing a storm event (Walters et al., 1985; Du and Shen, 2016). As a
result, the impact of the pollutants released before or after the
storm discharge will be similar, and the amount of pollutants
(loading) will become more important, although the release timing
can affect some local regions, particularly near the release
locations.

The fate and pathway of released pollutants in coastal bays are
quite different from that in river systems where released pollu-
tants are generally controlled by diffusion and one-way advection
Fig. 6. LETs for particles released during August 26–30, 2017 at different locations (indica
City, and (d) Galveston Channel. Note the different color scale between (a) and (b-d). (For
to the web version of this article.)
(Whitehead et al., 1986; Chapra and Whitehead, 2009). Complex
geometric and bathymetric features in coastal bays, together with
the barotropic and baroclinic interaction with shelf oceans, make
the pathway and susceptibility of pollutants difficult to predict
and quantify if without numerical tools and useful indexes. Using
the timescale LET would significantly simplify the environmental
assessment. One application of the LET is to examine the different
fate and pathways of pollutants released at different locations.
Numerical experiments show that LET varies greatly depending
on the release location (Fig. 6). For instance, pollutants released
at the Trinity River mouth tended to have more influence on East
Bay (Fig. 6a), while pollutants released at Clear Lake (i.e., western
shore) tended to have more impact on West Bay (Fig. 6b). It is nec-
essary to note that LET is normalized by the number of particles
released and thus indicates the average exposure for unit amount
of pollutants. When assessing the susceptibility of a defined region,
information about the amount of pollutants should be obtained
first.

4.2. Importance of shelf and ocean circulation for pollutant dispersion

After exiting the bay, dispersion of the pollutants was directly
regulated by the shelf circulation, ocean currents, and the
ted with black triangles), including (a) Trinity River mouth, (b) Clear Lake, (c) Texas
interpretation of the references to colour in this figure legend, the reader is referred
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interaction between the shallow shelf and deep ocean. Meso-scale
eddies in the ocean can be influential in altering the water
exchange between ocean and shelf.

Physical oceanography in the Gulf of Mexico is characterized
with intrusions of Loop Currents (Oey et al., 2005), mesoscale
eddies derived from Loop Currents (Barkan et al., 2017), and one
of the largest river systems in the world, Mississippi River
(Rabalais et al., 2002). Despite the expectation that a strong hurri-
cane like Harvey might affect the shelf and ocean circulation, anal-
ysis of the satellite-data based sea surface height (SSH) and
geostrophic currents shows little change was induced by Harvey
(Fig. 7). The SSH saw a marked increase in the coastal waters near
Galveston Bay from August 24 to 31, 2017 (Fig. 7d), which was
believed to be caused by the addition of large freshwater during
Harvey. This analysis suggests, despite the great influence of Har-
vey on local coastal systems, its influence on the overall ocean cir-
culation was negligible. However, it might be different for other
hurricanes. From drifter data and numerical modeling, Curcic
et al. (2016) showed Hurricane Issac in 2012 caused significant
stokes drift and ocean waves. Oey et al. (2006) showed that a sig-
nificant warming of Loop Current was induced by HurricaneWilma
in 2005.

After exiting the local estuarine system, pollutant dispersion in
the coastal ocean will follow the usually disturbed coastal circula-
tion and their fate may differ from that under normal conditions. It
is necessary to point out that the shelf circulation on the Texas-
Louisiana shelf has clear seasonality, with downcoast shelf current
most of the time except during summer (Cochrane and Kelly, 1986;
Fig. 7. Sea surface height (SSH) and geostrophic current based on satellite data (data so
difference in SSH between August 31 (toward the end of storm discharge period) and Aug
Current (LC), Warm Core Rings (WCR), and Cold Core Rings (CCR).
Cho et al., 1998). Particles released under normal conditions (tak-
ing 2007–2008 as an example) were mostly transported down-
coast except during July and August (Fig. 8). One interesting
pattern in the particle distribution is that the eddies along the shelf
break play a role in augmenting the water exchange between the
shelf and deep ocean. The mesoscale eddies (length
scale ~ 100 km) may persist months in the Gulf of Mexico. For
instance, the warm-core rings detach from the Loop Current
episodically at an interval of 4–17 months, move slowly westward,
and have lifetimes from months to a year (Sturges and Leben,
2000).

In summary, pollutant dispersion is subject to the influence of
local bathymetric and geometric features and to the regulation of
shelf-ocean circulations. One thing we did not include in this study
is the settling or buoyancy property of pollutants. Certain types of
pollutants tend to float at the sea surface due to smaller density
and hydrophobic nature, while others tend to settle because of
heavier density or attachment to suspended sediment. To include
these kinetic processes of pollutants, one has to prove the numer-
ical model is reasonably accurate in simulating not only the hydro-
dynamics but also sedimentary processes. Such efforts should be
conducted in future research to facilitate the assessment of certain
pollutants. As for the concern of this study, the analysis of passive
particles is sufficient to support the major conclusions. Even
though the retention time might be moderately or dramatically
changed if settling or floating is considered, the pathway and dis-
tinct difference due to release timing will very likely maintain
the same pattern.
urce: ECMWF) on (a) August 24, (b) August 31, and (c) September 7, 2017. (d) The
ust 24 (before the landfall of Harvey). Also marked in (a) are Gulf Stream (GS), Loop



Fig. 8. Particle distributions for 345,360 particles released continuously during the previous 30 days, with 1439 particles released at each of surface and bottom four times a
day (0, 6, 12, and 18 h).
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5. Conclusions

Given the increasing frequency of extreme precipitation events
as projected in several recent studies (e.g., Knight and Davis, 2009;
Donat et al., 2016; Pfahl et al., 2017), intense pollutant releases are
expected to occur more frequently in the future. This study uses a
Lagrangian particle-tracking method to examine how massive pol-
lutants released during Hurricane Harvey were dispersed inside
the Galveston Bay and over the adjacent shelf. We found distinc-
tively different retention and pathway between particles released
during and after the storm discharge. Using LET, it is found that
the susceptibility to the released pollutants was at least one-
order greater for post-storm release than storm release. It suggests
the timing of pollutant release can be more critical than the total
amount of pollutants, particularly for slow flushing, small-
volume estuarine systems. Our study suggests that the environ-
mental agencies pay attention not only to the total pollutant load
but also to the timing of pollutant release.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

We like to acknowledge the Texas Coastal Management Program,
the Texas General Land Office and NOAA for partial funding of this
project through CMP Contract #19-040-000-B074. This work was
performed using computing facilities at the College of William
andMary, which were provided by contributions from the National
Science Foundation, the Commonwealth of Virginia Equipment
Trust Fund and the Office of Naval Research.

References

Barkan, R., McWilliams, J.C., Molemaker, M.J., Choi, J., Srinivasan, K., Shchepetkin, A.
F., Bracco, A., 2017. Submesoscale dynamics in the northern Gulf of Mexico. Part
II: Temperature-salinity relations and cross-shelf transport processes. J. Phys.
Oceanogr. 47, 2347–2360. https://doi.org/10.1175/JPO-D-17-0040.1.

Brezonik, P.L., Stadelmann, T.H., 2002. Analysis and predictive models of
stormwater runoff volumes, loads, and pollutant concentrations from
watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water Res.
36 (7), 1743–1757. https://doi.org/10.1016/S0043-1354(01)00375-X.

Cardoso, P.G., Raffaelli, D., Lillebø, A.I., Verdelhos, T., Pardal, M.A., 2008. The impact
of extreme flooding events and anthropogenic stressors on the macrobenthic
communities’ dynamics. Estuarine Coastal Shelf Sci. 76 (3), 553–565. https://
doi.org/10.1016/j.ecss.2007.07.026.

Carrere L., Lyard F., Cancet M., Guillot A., 2015. FES 2014, a new tidal model on the
global ocean with enhanced accuracy in shallow seas and in the Arctic region,
In: Abstracts of the EGU General Assembly 2015, Vienna, Austria, 12–17 April
2015. http://adsabs.harvard.edu/abs/2015EGUGA..17.5481C, last access:
September 25, 2019.

Chapra, S., Whitehead, P.G., 2009. Modelling impacts of pollution in river systems: a
new dispersion model and a case study of mine discharges in the Abrud, Aries
and Mures River System in Transylvania, Romania. Hydrolog. Res. 40 (2–3),
306–322.

Cho, K., Reid, R.O., Nowlin, W.D., 1998. Objectively mapped stream function fields
on the Texas-Louisiana shelf based on 32 months of moored current meter data.
J. Geophys. Res. 103 (C5), 10377–10390. https://doi.org/10.1029/98JC00099.

Cochrane, J.D., Kelly, F.J., 1986. Low-frequency circulation on the Texas-Louisiana
continental shelf. J. Geophys. Res. 91 (C9), 10645–10659. https://doi.org/
10.1029/JC091iC09p10645.

https://doi.org/10.1175/JPO-D-17-0040.1
https://doi.org/10.1016/S0043-1354(01)00375-X
https://doi.org/10.1016/j.ecss.2007.07.026
https://doi.org/10.1016/j.ecss.2007.07.026
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0025
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0025
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0025
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0025
https://doi.org/10.1029/98JC00099
https://doi.org/10.1029/JC091iC09p10645
https://doi.org/10.1029/JC091iC09p10645


10 J. Du et al. / Science of the Total Environment 704 (2020) 135364
Curcic, M., Chen, S.S., Özgökmen, T.M., 2016. Hurricane-induced ocean waves and
stokes drift and their impacts on surface transport and dispersion in the Gulf of
Mexico. Geophys. Res. Lett. 43 (6), 2773–2781. https://doi.org/10.1002/
2015GL067619.

Delhez, E.J.M., 2006. Transient residence and exposure times. Ocean Sci. 2 (1), 1–9.
https://doi.org/10.5194/os-2-1-2006.

Dettmann, E.H., 2001. Effect of water residence time on annual export and
denitrification of nitrogen in estuaries: a model analysis. Estuaries 24, 481–
490. https://doi.org/10.2307/1353250.

Donat, M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N., 2016. More
extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6
(5), 508–513. https://doi.org/10.1038/nclimate2941.

Du, J., Shen, J., 2016. Water residence time in Chesapeake Bay for 1980–2012. J. Mar.
Sys. 164, 101–111. https://doi.org/10.1016/j.jmarsys.2016.08.011.

Du, J., Shen, J., Zhang, Y.J., Ye, F., Liu, Z., Wang, Z., Wang, Y.P., Yu, X., Sisson, M., Wang,
H.V., 2018a. Tidal response to sea-level rise in different types of estuaries: the
importance of length, bathymetry, and geometry. Geophys. Res. Lett. 45 (1),
227–235. https://doi.org/10.1002/2017GL075963.

Du, J., Park, K., Shen, J., Dzwonkowski, B., Yu, X., Yoon, B.I., 2018b. Role of baroclinic
processes on flushing characteristics in a highly stratified estuarine system,
Mobile Bay, Alabama. J. Geophys. Res. Oceans 123, 4518–4537. https://doi.org/
10.1029/2018JC013855.

Du, J., Park, K., 2019. Estuarine salinity recovery from an extreme precipitation
event: Hurricane Harvey in Galveston Bay. Sci. Total Environ. 670, 1049–1059.
https://doi.org/10.1016/j.scitotenv.2019.03.265.

Du, J., Park, K., Dellapenna, T.M., Clay, J.M., 2019a. Dramatic hydrodynamic and
sedimentary responses in Galveston Bay and adjacent inner shelf to Hurricane
Harvey. Sci. Total Environ. 653, 554–564. https://doi.org/10.1016/j.
scitotenv.2018.10.403.

Du J., Park K., Dellapenna T.M., Clay J.M., 2019. Corrigendum to ‘‘Dramatic
hydrodynamic and sedimentary responses in Galveston Bay and adjacent
inner shelf to Hurricane Harvey” [Sci. Total Environ. 653 (2019b), 554–564]. Sci.
Total Environ. 697, 134219. https://doi.org/10.1016/j.scitotenv.2019.134219.

Du, J., Park, K., Shen, J., Zhang, Y.J., Yu, X., Ye, F., Wang, Z., Rabalais, N.N., 2019c. A
hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of
Mexico. Ocean Sci. 15, 951–966. https://doi.org/10.5194/os-15-951-2019.

Flitter E., Valdmanis R., 2017. Oil and chemical spills from Hurricane Harvey big, but
dwarfed by Katrina. https://www.reuters.com/article/us-storm-harvey-spills/
oil-and-chemical-spills-from-hurricane-harvey-big-but-dwarfed-by-katrina-
idUSKCN1BQ1E8, last access: September 26, 2019.

Kantha, L.H., Clayson, C.A., 1994. An improved mixed layer model for geophysical
applications. J. Geophys. Res. 99 (C12), 25235–25266. https://doi.org/10.1029/
94JC02257.

Knight, D.B., Davis, R.E., 2009. Contribution of tropical cyclones to extreme rainfall
events in the southeastern United States. J. Geophys. Res. Atmos. 114 (23),
D23102. https://doi.org/10.1029/2009JD012511.

Mathews B., 2019. By the numbers: Imelda was fifth wettest tropical storm to hit
Lower 48. https://www.khou.com/article/weather/tropical-storm-imelda-by-
the-numbers/285-edf4616d-5fcb-47fd-b7e2-fa071cc19747, last access:
September 26, 2019.

Nazahiyah, R., Yusop, Z., Abustan, I., 2007. Stormwater quality and pollution loading
from an urban residential catchment in Johor, Malaysia. Water Sci. Technol. 56
(7), 1–9. https://doi.org/10.2166/wst.2007.692.

Oey L.Y., Ezer T., Lee H.C., 2005. Loop Current, rings and related circulation in the Gulf
of Mexico: A review of numerical models and future challenges. In: Circulation
in the Gulf of Mexico: Observations and Models (Sturges, W., ed.), Geophysical
Monograph Series 161, AGU, pp. 31–56. https://doi.org/10.1029/161GM04.

Oey, L.Y., Ezer, T., Wang, D.P., Fan, S.J., Yin, X.Q., 2006. Loop Current warming by
hurricane Wilma. Geophys. Res. Lett. 33 (8), L08613. https://doi.org/10.1029/
2006GL025873.

Paerl, H.W., Bales, J.D., Ausley, L.W., Buzzelli, C.P., Crowder, L.B., Eby, L.A., Fear, J.M.,
Go, M., Peierls, B.L., Richardson, T.L., Ramus, J.S., 2001. Ecosystem impacts of
three sequential hurricanes (Dennis, Floyd, and Irene) on the United States’
largest lagoonal estuary, Pamlico Sound, NC. Proc. Natl. Acad. Sci. U.S.A. 98 (10),
5655–5660. https://doi.org/10.1073/pnas.101097398.

Pfahl, S., O’Gorman, P.A., Fischer, E.M., 2017. Understanding the regional pattern of
projected future changes in extreme precipitation. Nat. Clim. Change 7 (6), 423–
427. https://doi.org/10.1038/nclimate3287.
Phillips A., 2018. Preparing for the next storm: Learning from the man-made
environmental disasters that followed Hurricane Harvey. https://www.
environmentalintegrity.org/wp-content/uploads/2018/08/Hurricane-Harvey-
Report-Final.pdf, last access: September 26, 2019.

Rabalais N.N., Turner R.E., Wiseman Jr., W.J., 2002. Gulf of Mexico hypoxia, a.k.a.
‘‘The dead zone.” Annu. Rev. Ecol. Syst. 33, 235–263. https://doi.org/10.1146/
annurev.ecolsys.33.010802.150513.

Rayson, M.D., Gross, E.S., Hetland, R.D., Fringer, O.B., 2016. Time scales in Galveston
Bay: an unsteady estuary. J. Geophys. Res. Oceans 121, 2268–2285. https://doi.
org/10.1002/2015JC011181.

Santschi, P.H., Presley, B.J., Wade, T.L., Garcia-Romero, B., Baskaran, M., 2001.
Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi
River Delta, Galveston Bay and Tampa Bay sediment cores. Mar. Environ. Res. 52
(1), 51–79. https://doi.org/10.1016/S0141-1136(00)00260-9.

Shen, J., Haas, L., 2004. Calculating age and residence time in the tidal York River
using three-dimensional model experiments. Estuarine Coastal Shelf Sci. 61 (3),
449–461. https://doi.org/10.1016/j.ecss.2004.06.010.

Stanev, E.V., Grashorn, S., Zhang, Y.J., 2017. Cascading ocean basins: numerical
simulations of the circulation and interbasin exchange in the Azov-Black-
Marmara-Mediterranean Seas system. Ocean Dyn. 67 (8), 1003–1025. https://
doi.org/10.1007/s10236-017-1071-2.

Stuckey A., 2017. Galveston Bay dolphins struggle to recover from Hurricane
Harvey. https://www.houstonchronicle.com/news/houston-texas/houston/
article/Galveston-Bay-dolphins-struggle-to-recover-from-12384929.php, last
access: Sep 26, 2019.

Sturges, W., Leben, R., 2000. Frequency of ring separations from the Loop Current in
the Gulf of Mexico: a revised estimate. J. Phys. Oceanogr. 30 (7), 1814–1819.
https://doi.org/10.1175/1520-0485(2000) 030<1814:FORSFT>2.0.CO;2.

Taylor, D.I., Oviatt, C.A., Borkman, D.G., 2011. Non-linear responses of a coastal
aquatic ecosystem to large decreases in nutrient and organic loadings. Estuaries
Coasts 34 (4), 745–757. https://doi.org/10.1007/s12237-010-9312-3.

Tiefenthaler, L.L., Stein, E.D., Schiff, K.C., 2008. Watershed and land use-based
sources of trace metals in urban storm water. Environ. Toxicol. Chem. 27 (2),
277–287. https://doi.org/10.1897/07-126R.1.

Umlauf, L., Burchard, H., 2003. A generic length-scale equation for geophysical
turbulence models. J. Mar. Res. 61 (2), 235–265. https://doi.org/10.1357/
002224003322005087.

van Oldenborgh G.J., van der Wiel K., Sebastian A., Singh R., Arrighi J., Otto F.,
Haustein K., Li S., Vecchi G., Cullen H., 2018. Corrigendum: Attribution of
extreme rainfall from Hurricane Harvey, August 2017 (2017 Environ. Res. Lett.
12 124009). Environ. Res. Lett. 13(1), 019501. https://doi.org/10.1088/1748-
9326/aaa343.

Walters, R.A., Cheng, R.T., Conomos, T.J., 1985. Time scales of circulation and mixing
processes of San Francisco Bay waters. Hydrobiologia 129, 13–26. https://doi.
org/10.1007/BF00048685.

Wetz, M.S., Yoskowitz, D.W., 2013. An ‘extreme’ future for estuaries? Effects of
extreme climatic events on estuarine water quality and ecology. Mar. Pollut.
Bull. 69 (1–2), 7–18. https://doi.org/10.1016/j.marpolbul.2013.01.020.

Weyhenmeyer, G.A., Willén, E., Sonesten, L., 2004. Effects of an extreme
precipitation event on water chemistry and phytoplankton in the Swedish
Lake Mälaren. Boreal Environ. Res. 9 (5), 409–420.

Whitehead, P.G., Williams, R.J., Hornberger, G.M., 1986. On the identification of
pollutant or tracer sources using dispersion theory. J. Hydrol. 84 (3–4), 273–
286.

Ye, F., Zhang, Y.J., Wang, H.V., Friedrichs, M.A.M., Irby, I.D., Alteljevich, E., Valle-
Levinson, A., Wang, Z., Huang, H., Shen, J., Du, J., 2018. A 3D unstructured-grid
model for Chesapeake Bay: importance of bathymetry. Ocean Model. 127, 16–
39. https://doi.org/10.1016/j.ocemod.2018.05.002.

Zhang, Y.J., Ateljevich, E., Yu, H.C., Wu, C.H., Yu, J.C.S., 2015. A new vertical
coordinate system for a 3D unstructured-grid model. Ocean Model. 85, 16–31.
https://doi.org/10.1016/j.ocemod.2014.10.003.

Zhang, Y.J., Ye, F., Stanev, E.V., Grashorn, S., 2016. Seamless cross-scale modeling
with SCHISM. Ocean Model. 102, 64–81. https://doi.org/10.1016/j.
ocemod.2016.05.002.

Zhang, Y., Baptista, A.M., 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-
element model for cross-scale ocean circulation. Ocean Model. 21 (3–4), 71–96.
https://doi.org/10.1016/j.ocemod.2007.11.005.

https://doi.org/10.1002/2015GL067619
https://doi.org/10.1002/2015GL067619
https://doi.org/10.5194/os-2-1-2006
https://doi.org/10.2307/1353250
https://doi.org/10.1038/nclimate2941
https://doi.org/10.1016/j.jmarsys.2016.08.011
https://doi.org/10.1002/2017GL075963
https://doi.org/10.1029/2018JC013855
https://doi.org/10.1029/2018JC013855
https://doi.org/10.1016/j.scitotenv.2019.03.265
https://doi.org/10.1016/j.scitotenv.2018.10.403
https://doi.org/10.1016/j.scitotenv.2018.10.403
https://doi.org/10.5194/os-15-951-2019
https://doi.org/10.1029/94JC02257
https://doi.org/10.1029/94JC02257
https://doi.org/10.1029/2009JD012511
https://doi.org/10.2166/wst.2007.692
https://doi.org/10.1029/2006GL025873
https://doi.org/10.1029/2006GL025873
https://doi.org/10.1073/pnas.101097398
https://doi.org/10.1038/nclimate3287
https://doi.org/10.1002/2015JC011181
https://doi.org/10.1002/2015JC011181
https://doi.org/10.1016/S0141-1136(00)00260-9
https://doi.org/10.1016/j.ecss.2004.06.010
https://doi.org/10.1007/s10236-017-1071-2
https://doi.org/10.1007/s10236-017-1071-2
https://doi.org/10.1175/1520-0485(2000)030&lt;1814:FORSFT&gt;2.0.CO;2
https://doi.org/10.1007/s12237-010-9312-3
https://doi.org/10.1897/07-126R.1
https://doi.org/10.1357/002224003322005087
https://doi.org/10.1357/002224003322005087
https://doi.org/10.1007/BF00048685
https://doi.org/10.1007/BF00048685
https://doi.org/10.1016/j.marpolbul.2013.01.020
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0210
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0210
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0210
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0215
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0215
http://refhub.elsevier.com/S0048-9697(19)35356-2/h0215
https://doi.org/10.1016/j.ocemod.2018.05.002
https://doi.org/10.1016/j.ocemod.2014.10.003
https://doi.org/10.1016/j.ocemod.2016.05.002
https://doi.org/10.1016/j.ocemod.2016.05.002
https://doi.org/10.1016/j.ocemod.2007.11.005

	Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations
	1 Introduction
	2 Methods
	2.1 Hydrodynamic model
	2.2 Lagrangian particle tracking
	2.3 Transport timescales

	3 Results
	3.1 Particles released during storm
	3.2 Particles released after storm
	3.3 LET to quantify the susceptibleness

	4 Discussion
	4.1 Importance of pollutant release timing
	4.2 Importance of shelf and ocean circulation for pollutant dispersion

	5 Conclusions
	Declaration of Competing Interest
	ack16
	Acknowledgments
	References


